Hee Cheol Chung
Hee Cheol Chung
Home
Publications
Personal interests
Light
Dark
Automatic
Publications
Type
Journal article
Preprint
Book section
Date
2022
2021
2020
2019
Hee Cheol Chung
,
Irina Gaynanova
,
Yang Ni
(2022).
Sparse semiparametric discriminant analysis for high-dimensional zero-inflated data
.
arXiv
.
Preprint
Hee Cheol Chung
,
Gauri Sankar Datta
(2022).
Bayesian spatial models for estimating means of sampled and nonsampled small areas
.
Survey Methodology
(accepted).
Preprint
Hee Cheol Chung
,
Irina Gaynanova
,
Yang Ni
(2022).
Phylogenetically informed Bayesian truncated copula graphical models for microbial association networks
.
The Annals of Applied Statistics
.
Preprint
PDF
Hee Cheol Chung
,
Jeongyoun Ahn
(2021).
Subspace rotations for high-dimensional outlier detection
.
Journal of Multivariate Analysis
.
PDF
Jeongyoun Ahn
,
Hee Cheol Chung
,
Yongho Jeon
(2021).
Trace ratio optimization for high-dimensional multi-class discrimination
.
Journal Computational and Graphical Statistics
.
PDF
Xi Fang
,
Wenwu Sun
,
Julie Jeon
,
Michael Azain
,
Holly Kinder
,
Jeongyoun Ahn
,
Hee Cheol Chung
,
Ryan S. Mote
,
Nikolay M. Filipov
,
Qun Zhao
,
Srujana Rayalam
,
Hea Jin Park
(2020).
Perinatal docosahexaenoic acid supplementation improves cognition and alters brain functional organization in piglets
.
Nutrient
, (12).
PDF
Scott N. Markley
,
Taylor J. Hafley
,
Coleman A. Allums
,
Steven R. Holloway
,
Hee Cheol Chung
(2020).
The limits of homeownership: Racial capitalism, black wealth, and the appreciation gap in Atlanta
.
International Journal of Urban and Regional Research
, (44).
PDF
Hee Cheol Chung
,
Gauri Sankar Datta
,
Jerry Maples
(2019).
Estimation of median incomes of the American states: Bayesian estimation of means of subpopulations
. In: Opportunities and Challenges for Development: Essays for Sarmila Banerjee, Springer International,
pp. 505–518
.
PDF
William R. Bell
,
Hee Cheol Chung
,
Gauri Sankar Datta
,
Carolina Franco
(2019).
Measurement error in small area estimation: functional versus structural versus naive models
.
Survey Methodology
, (45).
PDF
Source Document
Cite
×